
Presto 2.5
Directory Provider Guide

1

Table of Contents

Overview 3

Introduction 4

Usage 5

Example 7

Groups 13

2

Overview

The Presto system allows administrators to plug in custom directory service providers to

augment built-in Presto support for Microsoft Active Directory and Apple Open

Directory.

Supported Platforms:
Windows: Vista 7, 8, 10; Server 2008 R2; Server 2012

Mac: OS X 10.11 +

Linux: Ubuntu 14.04 +

3

Introduction

Presto Directory Provider plugins run as scripts or programs that output their results to

stdout as JSON formatted text.

Presto Directory Providers are managed by the Presto Agent component. As such, any

customization should be applied to the agent.conf file located at:

Windows

C:\ProgramData\Collobos\Presto\agent.conf

Mac

/Library/Application Support/Collobos/Presto/agent.conf

This file is formatted as JSON text. It describes additional configuration that the agent

will use to manage users and discover services on the network.

This document is about Directory Service Provider plugins, which are responsible for

looking up users and groups, and authenticating Presto users.

4

Usage

To integrate an additional directory provider into the Presto system, follow these steps:

⦁ Open the editor of your choice, and paste in the following example PowerShell

script.

Figure 1: Example PowerShell Script

This script will check if the username is “johndoe” and the password is “x”. If so,

it sends JSON text to stdout and returns an exit code of 0. Otherwise, nothing

is sent to stdout and the script returns a non-zero exit code.

⦁ Save this document to C:\ProgramData

\presto_directory_provider.ps. The location of the script is not

important, but we will use the location in the following step.

⦁ Edit the agent.conf file and add a new custom directory provider section.

Figure 2: Example Declaration for Custom Directory Provider

After finishing the edits, the file should look like Figure 2.

⦁ Save changes to the agent.conf file. Presto Agent automatically re-reads the

file and adds the new directory provider to the Presto system.

5

That’s it! When the Presto system tries to authenticate a user, the new directory

provider will be invoked with the command line:

C:\ProgramData\presto_directory_provider.ps <name of user>

The password is read through stdin. It is possible for the password to be null.

6

Expected Output

The output of the authentication command is also JSON formatted text that describes a

user to Presto. If the plugin is asked to authenticate the user jsmith@example.com,

it might respond with the following JSON text if the authentication succeeded:

Figure 3: A Properly Formatted User

The resulting JSON text would contain the provider name, the name of the user and

their display name, their GUID, and an array of strings. This array of strings is

interpreted as the groups to which that the user belongs. Presto will turn this array into

tags that can be used for writing rules.

Note: Presto will insert the string "group:" to each of the individual strings in the tags

array.

Finally, the script would also return an exit code of 0 which tells Presto that the

authentication succeeded.

If the authentication fails, it would print nothing to stdout and return a non-zero exit

code.

Also note: The plugin can use whatever method it needs to determine if the

authentication succeeded. However, it must return the result as JSON formatted text.

PIN Code Authentication

Presto supports PIN Code authentication, which allows users to login with a PIN code in

addition to a username and password.

To setup a PIN code directory service provider, use the key

authenticate_user_with_pin in the agent.conf file. The PIN code will be

passed to the script via stdin, just like the password in username/password scripts.

IP Address Authentication

Presto supports IP address authentication. This is ideal for Single-Sign-On support in

conjunction with 802.11x wireless networks. A properly configured Directory

Service Provider that implements IP address authentication will allow users to start and

use the Presto app without ever having to login.

7

To setup an IP Address directory service provider, use the key

authenticate_user_with_address in the agent.conf file. The IP Address

will be passed to the script via stdin, just like the password in username/password

scripts.

Example Scripts

The following section enumerates scripts written in a variety of scripting languages.

Presto’s plugin system is completely language agnostic. As long as Presto can invoke the

program and the program returns data in the proper JSON format, system

administrators are free to use the scripting language with which they feel most

comfortable.

Because Presto’s plugin system communicates using JSON formatted text, it is our belief

that the node.js environment is best suited for writing scripts. However, as the

following section shows, it is possible to write a script in many languages.

All of the scripts presented below will authenticate the user “johndoe” with the

password “x”.

8

bash

agent.conf

script.bash

9

node.js

agent.conf
script.js

10

DOS
agent.conf
script.bat

11

PowerShell

agent.conf
script.ps1

12

